Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus.

Identifieur interne : 002B25 ( Main/Exploration ); précédent : 002B24; suivant : 002B26

Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus.

Auteurs : Nicola Carraro [États-Unis] ; Tracy Eizabeth Tisdale-Orr ; Ronald Matthew Clouse ; Anne Sophie Knöller ; Rachel Spicer

Source :

RBID : pubmed:22645571

Abstract

Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization.

DOI: 10.3389/fpls.2012.00017
PubMed: 22645571
PubMed Central: PMC3355733


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus.</title>
<author>
<name sortKey="Carraro, Nicola" sort="Carraro, Nicola" uniqKey="Carraro N" first="Nicola" last="Carraro">Nicola Carraro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture and Landscape Architecture, Purdue University West Lafayette, IN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Landscape Architecture, Purdue University West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tisdale Orr, Tracy Eizabeth" sort="Tisdale Orr, Tracy Eizabeth" uniqKey="Tisdale Orr T" first="Tracy Eizabeth" last="Tisdale-Orr">Tracy Eizabeth Tisdale-Orr</name>
</author>
<author>
<name sortKey="Clouse, Ronald Matthew" sort="Clouse, Ronald Matthew" uniqKey="Clouse R" first="Ronald Matthew" last="Clouse">Ronald Matthew Clouse</name>
</author>
<author>
<name sortKey="Knoller, Anne Sophie" sort="Knoller, Anne Sophie" uniqKey="Knoller A" first="Anne Sophie" last="Knöller">Anne Sophie Knöller</name>
</author>
<author>
<name sortKey="Spicer, Rachel" sort="Spicer, Rachel" uniqKey="Spicer R" first="Rachel" last="Spicer">Rachel Spicer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22645571</idno>
<idno type="pmid">22645571</idno>
<idno type="doi">10.3389/fpls.2012.00017</idno>
<idno type="pmc">PMC3355733</idno>
<idno type="wicri:Area/Main/Corpus">002A18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A18</idno>
<idno type="wicri:Area/Main/Curation">002A18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A18</idno>
<idno type="wicri:Area/Main/Exploration">002A18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus.</title>
<author>
<name sortKey="Carraro, Nicola" sort="Carraro, Nicola" uniqKey="Carraro N" first="Nicola" last="Carraro">Nicola Carraro</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture and Landscape Architecture, Purdue University West Lafayette, IN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Landscape Architecture, Purdue University West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tisdale Orr, Tracy Eizabeth" sort="Tisdale Orr, Tracy Eizabeth" uniqKey="Tisdale Orr T" first="Tracy Eizabeth" last="Tisdale-Orr">Tracy Eizabeth Tisdale-Orr</name>
</author>
<author>
<name sortKey="Clouse, Ronald Matthew" sort="Clouse, Ronald Matthew" uniqKey="Clouse R" first="Ronald Matthew" last="Clouse">Ronald Matthew Clouse</name>
</author>
<author>
<name sortKey="Knoller, Anne Sophie" sort="Knoller, Anne Sophie" uniqKey="Knoller A" first="Anne Sophie" last="Knöller">Anne Sophie Knöller</name>
</author>
<author>
<name sortKey="Spicer, Rachel" sort="Spicer, Rachel" uniqKey="Spicer R" first="Rachel" last="Spicer">Rachel Spicer</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22645571</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-462X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2012.00017</ELocationID>
<Abstract>
<AbstractText>Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carraro</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture and Landscape Architecture, Purdue University West Lafayette, IN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tisdale-Orr</LastName>
<ForeName>Tracy Eizabeth</ForeName>
<Initials>TE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clouse</LastName>
<ForeName>Ronald Matthew</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Knöller</LastName>
<ForeName>Anne Sophie</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spicer</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ABCB</Keyword>
<Keyword MajorTopicYN="N">AUX/LAX</Keyword>
<Keyword MajorTopicYN="N">PIN</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">auxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22645571</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2012.00017</ArticleId>
<ArticleId IdType="pmc">PMC3355733</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2000 Apr;17(4):540-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Mar 8;108(5):661-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011;7:508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jul;3(7):677-684</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1998 Oct;39(10):1111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9871369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):2063-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Aug;30(8):934-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6903-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1090-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Aug 16;273(5277):948-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8688077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1093-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18824505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jul;59(1):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3069-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Mar 15;22(6):810-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18347099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2010 Jul;277(14):2954-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20528920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jul;2(4):823-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2922-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Oct 15;20(20):2902-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(12):249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):464-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Nov;94(11):1745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(4):640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21992190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2007 Feb;35(Pt 1):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17233620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 20;332(6032):960-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Aug;61(13):3689-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 May;161(3):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Nov;29(11):1467-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 14;415(6873):806-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11845211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):458-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 May;152(1):13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24302312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Oct;10(10):1217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18776898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 20;320(5883):1610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;537:39-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19378139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):946-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17825053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Aug;97(8):1296-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30231-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11346655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1373-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Apr 15;20(8):1015-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Oct;132(20):4521-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16192309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1980 Dec;66(6):1190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Oct;44(2):179-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):254-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Oct;10(10):1623-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 3;302(5642):81-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Jun 6;16(11):1123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2005 Nov;7(11):1057-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Oct;115(2):577-585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Aug;6(6):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 18;282(5397):2226-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9856939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jun;149(2):765-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 13;426(6963):147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14614497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2008 Oct;57(5):758-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Oct 15;15(20):2648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2009 Aug;136(16):2675-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Apr;58(4):424-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15114421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2007 Aug;56(4):564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17654362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jul 15;12(14):2175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9679062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9282-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 9;329(5988):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 May;186(3):577-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a001552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Nov;13(11):2441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Clouse, Ronald Matthew" sort="Clouse, Ronald Matthew" uniqKey="Clouse R" first="Ronald Matthew" last="Clouse">Ronald Matthew Clouse</name>
<name sortKey="Knoller, Anne Sophie" sort="Knoller, Anne Sophie" uniqKey="Knoller A" first="Anne Sophie" last="Knöller">Anne Sophie Knöller</name>
<name sortKey="Spicer, Rachel" sort="Spicer, Rachel" uniqKey="Spicer R" first="Rachel" last="Spicer">Rachel Spicer</name>
<name sortKey="Tisdale Orr, Tracy Eizabeth" sort="Tisdale Orr, Tracy Eizabeth" uniqKey="Tisdale Orr T" first="Tracy Eizabeth" last="Tisdale-Orr">Tracy Eizabeth Tisdale-Orr</name>
</noCountry>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Carraro, Nicola" sort="Carraro, Nicola" uniqKey="Carraro N" first="Nicola" last="Carraro">Nicola Carraro</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22645571
   |texte=   Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22645571" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020